2014 ESC Market Transformation Conference What does ESPC success look like at UMM?

University of Minnesota Morris

Troy Goodnough

Sustainability Director 320-589-6303 good0044@morris.umn.edu

Green Prairie Community Residence hall- opened fall 2013

STEVENS CO.

Welcome Center – historic renovation

Second Nature CLIMATE LEADERSHIP AWARDS WINNER 2014

AMERICAN COLUMN & UNMANITY PROVIDENTS' CLIMATE COMMITMENT

Morris worked with vendor to develop a

CARBON MASTER PLAN

Modeled collective impact of adding: Biomass plant Absorption chilling Backpressure steam turbine Wind turbines

McKinstry energy modeling

Interior lighting upgrades Exterior lighting upgrades Controls upgrades Completed solar thermal for pool Boiler plant upgrades

University of Minnesota - Morris Table 4.2: FIM Matrix

ETM #	ETM Name	Description (Existing Conditions)	Description (Proposed Conditions)	Budget
9.01-UMM	Interior Lighting Upgrades	Many of the interior lighting fixtures on the UMM Campus are flourescent with T12 lamps and magnetic ballasts.	Upgrade existing fluorescent lighting fixtures with T8 lamps and electronic ballasts.	\$323,767
9.24-UMM	Exterior Lighting Upgrades	Parking lot, pathway and building wall packs are predominately high pressure sodium lights	Upgrade HPS fixtures to LED technology that is dark sky compliant.	\$212,711
17.09a-RSP	Controls Upgrade - Recreation Swimming Pool Ventilation	The Dumont Air Handling Unit is not maintaining proper control of the recreation natatorium environment	Upgrade the controls on the Dumont unit for better control of the environment within the recreation pool environment	\$13,814
24.01-SPO	Thermal Solar for Sports Complex	Domestic hot water is heated with a steam powered instantaneous water heater in the Sports Complex. Presently both the Recreation swimming pool and the competition swimming pool area heated via two independent steam to hot water heat exchangers with stea	Implement a thermal solar heating system to heat the swimming pool water of both pools with any remaining excess capacity providing preheat to domestic water and significantly reduce the use of fossil fuel generated steam.	\$250,446
18.16-HPF	Ground Water Modifications	There is a sump pump located in the basement of the heating plant which extacts water from the relatively high water table and ejects it directly to the sanitary sewer system.	Rather than ejecting this water directly down the sewer, pretreat this water and utilize for boiler make-up throughout the year and cooling tower make-up in the summer time. Any remaining water not used for make-up can be used for irrigating the varsity	\$170,816
10.07-HPF	Steam Turbine/Absorption Chiller	Excess unused energy capacity exists in the biomass boiler while electrical power is purchased.	Use a steam turbine to harvest the available energy to produce electricity and provide the desired heat energy for distribution. Use an absorption chiller for condensing steam and added chilled water capacity.	\$2,939,232
4.16-UMM	Direct Digital Control (DDC) Enhancements	An existing Invensys Direct Digital Control (DDC) system is used to control most of the larger pieces of heating, ventilating and air conditioning (HVAC) equipment on the Campus. However, there remains an opportunity to enhance the existing DDC system to	Upgrade the existing DDC system to support enhanced building control strategies, expand energy use monitoring through submetering intrfaces and provide data to the informational kiosks for transparent facility operations.	\$458,510
28.05-UMM	Kiosk	Communicating information to the student body, faculty and vistors is cumbersome, difficult to keep current and consumes significant natrual resources.	Informational kiosks equipped with interfaces to a wide range of data sources will provide real-time information at strategic locations throughout the campus.	\$95,851
11.04-UMM	Power Factor Correction	On average, the annual power factor for the three phase main electrical service is 84%. This lower power factor contributes to excessive monthly electrical charges.	Installation of capacitor banks will significant increase the power factor and reduce these excessive charges.	\$14,070
Totals for Selected FIMs				\$4,479,215

Insulated concrete form (ICF) construction at Green Prairie Community residence hall

60%

of Morris's electricity comes from wind

First

Large-scale wind turbine at a public US university

2 turbines produce 10.5million kWhrs

per year

3,150,000 gallons of water avoided each year by using wind turbines

10,500,000 kWh produced per year by turbines

8,500,000 kWh used by campus per year

2,000,000 kWh of "extra" energy produced by wind!

*5,000,000 kWh is what actually goes to the power company

Morris Biomass Gasification plant

70 percent

of Morris's heating and cooling needs

annually burns

Solutions of biomass

corn cobs

34 flat-plate solar thermal panels

annually offsets

270 MMBtu

of natural gas use

2007 - 2012 = **1,000,000** kWh energy reduction

40% reduction in carbon footprint

Jacqueline Johnson

Chancellor

Lowell Rasmussen

Vice-Chancellor Finance and Facilities

Lisa Harris

Assistant to Vice-Chancellor Finance and Facilities

Mike Vangstad Maintenance and Operations Supervisor

Jim Barbour Biomass Gasification Scientist